тел. 8 (495) 287-45-88
EnglishFrenchGermanItalianPortugueseRussianSpanish

Биогаз. Технология производства

Утилизация жидкого навоза (помёта) с производством биогаза и выработкой электрической и тепловой энергии

Технология производства биогаза. Современные животноводческие комплексы обеспечивают получение высоких производственных показателей. Применяемые технологические решения позволяют полностью соблюдать требования действующих санитарно-гигиенических норм в помещениях самих комплексов.

Однако большие количества жидкого навоза, сконцентрированные в одном месте, создают значительные проблемы для экологии прилегающих к комплексу территорий. Например, свежий свиной навоз и помёт относятся к отходам, имеющим 3-й класс опасности. Экологические вопросы находятся на контроле надзирающих органов, требования законодательства по этим вопросам постоянно ужесточаются.

Биокомплекс предлагает комплексное решение по вопросам утилизации жидкого навоза, которое включает ускоренную переработку в современных биогазовых установках (БГУ). В процессе переработки, в ускоренном режиме протекают естественные процессы разложения органики с выделением газа включающего: метан, СО2, серу, и т.д. Только получаемый газ не выделяется в атмосферу, вызывая парниковый эффект, а направляется в специальные газогенераторные (когенерационные) установки, которые вырабатывают электрическую и тепловую энергию.

Биогаз: определение, основные виды сырья

Биогаз — горючий газ, образующийся при анаэробном метановом сбраживании биомассы и состоящий преимущественно из метана (55-75%), двуокиси углерода (25-45%) и примесей сероводорода, аммиака, оксидов азота и других (менее 1%).

Разложение биомассы происходит в результате химико-физических процессов и симбиотической жизнедеятельности 3-х основных групп бактерий, при этом продукты метаболизма одних групп бактерий являются продуктами питания других групп, в определённой последовательности.

Первая группа — гидролизные бактерии, вторая – кислотообразующие, третья — метанобразующие.

В качестве сырья для производства биогаза могут использоваться как органические агропромышленные или бытовые отходы, так и растительное сырьё.

Наиболее распространёнными видами отходов АПК, используемыми для производства биогаза, являются:

  • навоз свиней и КРС, помёт птицы;
  • остатки с кормового стола комплексов КРС;
  • ботва овощных культур;
  • некондиционный урожай злаковых и овощных культур, сахарной свёклы, кукурузы;
  • жом и меласса;
  • мучка, дробина, мелкое зерно, зародыши;
  • дробина пивная, солодовые ростки, белковый отстой;
  • отходы крахмало-паточного производства;
  • выжимки фруктовые и овощные;
  • сыворотка;
  • и пр.

Примерный выход биогаза из отдельных видов сырья

Источник сырья

Вид сырья

Количество сырья в год, м3 (тн.)

Количество биогаза,

м3

1 дойная корова Бесподстилочный жидкий навоз

20

500

1 свинья на откорме Бесподстилочный жидкий навоз

1,5–6

42–168

1 бычок на откорме Подстилочный твёрдый навоз

3–11

240–880

1 лошадь Подстилочный твёрдый навоз

8

504

100 кур Сухой помёт

1,8

252

1 га пашни Свежий силос кукурузы

40–60

7 040–10 560

1 га пашни Сахарная свёкла

40–70

5 200–9 100

1 га пашни Свежий силос из зерновых культур

30–50

5 016–8 360

1 га пашни Свежий силос из травы

26–43

4 118–6 811

Количество субстратов (видов отходов), используемых для производства биогаза в пределах одной биогазовой установки (БГУ), может варьироваться от одного до десяти и более.

Биогазовые проекты в агропромышленном секторе могут быть созданы по одному из следующих вариантов:

  • производство биогаза из отходов отдельного предприятия (например, навоза животноводческой фермы, жома сахарного завода, барды спиртового завода);
  • производство биогаза на базе отходов разных предприятий, с привязкой проекта к отдельному предприятию либо отдельно расположенной централизованной БГУ;
  • производство биогаза с преимущественным использованием энергетических растений на отдельно расположенных БГУ.

Наиболее распространённым способом энергетического использования биогаза является сжигание в газопоршневых двигателях в составе мини-ТЭЦ, с производством электроэнергии и тепла.

Технологии производства биогаза

Существуют различные варианты технологических схем биогазовых станций – в зависимости от типов и количества видов применяемых субстратов. Использование предварительной подготовки, в ряде случаев, позволяет добиться увеличения скорости и степени распада сырья в биореакторах, а, следовательно, увеличения общего выхода биогаза. В случае применения нескольких субстратов, отличающихся свойствами, например, жидких и твёрдых отходов, их накопление, предварительная подготовка (разделение на фракции, измельчение, подогрев, гомогенизация, биохимическая или биологическая обработка, и пр.) проводится отдельно, после чего они либо смешиваются перед подачей в биореакторы, либо подаются раздельными потоками.

Основными структурными элементами схемы типичной биогазовой установки являются:

  • система приёма и предварительной подготовки субстратов;
  • система транспортировки субстратов в пределах установки;
  • биореакторы (ферментеры) с системой перемешивания;
  • система обогрева биореакторов;
  • система отвода и очистки биогаза от примесей сероводорода и влаги;
  • накопительные ёмкости сброженной массы и биогаза;
  • система программного контроля и автоматизации технологических процессов.

Технологические схемы БГУ бывают различными в зависимости от вида и числа перерабатываемых субстратов, от вида и качества конечных целевых продуктов, от того или иного используемого «ноу-хау» компании поставщика технологического решения, и ряда других факторов. Наиболее распространёнными на сегодняшний день являются схемы с одноступенчатым сбраживанием нескольких видов субстратов, одним из которых обычно является навоз.

biogaz-01

С развитием биогазовых технологий применяемые технические решения усложняются в сторону двухступенчатых схем, что в ряде случаев обосновано технологической необходимостью эффективной переработки отдельных видов субстратов и повышением общей эффективности использования рабочего объема биореакторов.

biogaz-02

Краткое описание технологического процесса БГУ, работающего на жидком навозе

Особенностью производства биогаза является то, что он может вырабатываться метановыми бактериями только из абсолютно сухих органических веществ. Поэтому задачей первого этапа производства, является создание смеси субстрата, который имеет повышенное содержание органических веществ, и в то же время может перекачиваться насосами. Это субстрат с содержанием сухих веществ 10-12%. Решение достигается путём выделения излишней влаги с помощью шнековых сепараторов.

Жидкий навоз поступает из производственных помещений в резервуар, гомогенизируется с помощью погружной мешалки, и погружным насосом подаётся в цех разделения на шнековые сепараторы. Жидкая фракция накапливается в отдельном резервуаре. Твёрдая фракция загружается в устройство подачи твёрдого сырья.

В соответствии с графиком загрузки субстрата в ферментёр, по разработанной программе периодически включается насос, подающий жидкую фракцию в ферментёр и одновременно включается загрузчик твёрдого сырья. В качестве варианта, жидкая фракция может подаваться в загрузчик твёрдого сырья, имеющего функцию перемешивания, и затем уже готовая смесь подаётся в ферментёр по разработанной программе загрузки.. Включения бывают непродолжительными. Это сделано, чтобы не допустить излишнего поступления органического субстрата в ферментёр, поскольку это может нарушить баланс веществ и вызовет дестабилизацию процесса в ферментёре. Одновременно включаются также насосы, перекачивающие дигестат из ферментёра в дображиватель и из дображивателя в накопитель дигестата (лагуну), чтобы не допустить переполнения ферментёра и дображивателя.

Находящиеся в ферментёре и дображивателе массы дигестата, перемешиваются для обеспечения равномерного распределения бактерий по всему объёму ёмкостей. Для перемешивания используются тихоходные мешалки специальной конструкции.

В процессе нахождения субстрата в ферментёре, бактериями выделяется до 80% всего биогаза, вырабатываемого БГУ. В дображивателе выделяется оставшаяся часть биогаза.

Важную роль в обеспечении стабильного количества выделяемого биогаза играет температура жидкости внутри ферментёра и дображивателя. Как правило, процесс протекает в мезофильном режиме с температурой 41-43ᴼС. Поддержание стабильной температуры достигается применением специальных трубчатых нагревателей внутри ферментёров и дображивателей, а также надёжной теплоизоляцией стен и трубопроводов. Биогаз, выходящий из дигестата, имеет повышенное содержание серы. Очистка биогаза от серы производится с помощью специальных бактерий, заселяющих поверхность утеплителя, уложенного на деревянный балочный свод внутри ферментёров и дображивателей.

Накопление биогаза осуществляется в газгольдере, который образуется между поверхностью дигестата и эластичным высокопрочным материалом, покрывающим ферментёр и дображиватель сверху. Материал имеет способность сильно растягиваться (без уменьшения прочности), что накоплении биогаза значительно увеличивает ёмкость газгольдера. Для предохранения переполнения газгольдера и разрыва материала, имеется предохранительный клапан.

biogaz-03Далее биогаз поступает в когенерационную установку. Когенерационная установка (КГУ) является блоком, в котором осуществляется выработка электрической энергии генераторами, привод которых осуществляют газопоршневые двигатели, работающие на биогазе. Когенераторы работающие на биогазе, имеют конструктивные отличия от обычных газогенераторных двигателей, поскольку биогаз является сильно обеднённым топливом. Вырабатываемая генераторами электрическая энергия, обеспечивает питание электрооборудования самой БГУ, а все сверх этого отпускается близлежащим потребителям. Энергия жидкости, идущей на охлаждение когенераторов и является вырабатываемой тепловой энергией за минусом потерь в бойлерных устройствах. Вырабатываемая тепловая энергия, частично идёт на обогрев ферментёров и дображивателей, а оставшаяся часть – также направляется в близ лежащим потребителям. поступает в

Можно установить дополнительное оборудование для очистки биогаза до уровня природного газа, однако это дорогостоящее оборудование и его применяют, только если целью БГУ является не производство тепловой и электрической энергии, а производство топлива для газопоршневых двигателей. Апробированными и наиболее часто применяемыми технологиями очистки биогаза являются водная абсорбция, адсорбция на носителе под давлением, химическое осаждение и мембранное разделение.

Энергетическая эффективность работы БГУ во многом зависит как от выбранной технологии, материалов и конструкции основных сооружений, так и от климатических условий в районе их расположения. Среднее потребление тепловой энергии на подогрев биореакторов в умеренном климатическом поясе равно 15-30% от энергии, вырабатываемой когенераторами (брутто).

Общая энергетическая эффективность биогазового комплекса с ТЭЦ на биогазе составляет в среднем 75-80%. В ситуации, когда всё тепло, получаемое от когенерационной станции при производстве электроэнергии невозможно потребить (распространённая ситуация из-за отсутствия внешних потребителей тепла), оно отводится в атмосферу. В таком случае, энергетическая эффективность биогазовой ТЭС составляет лишь 35% от общей энергии биогаза.

Основные показатели работы биогазовых установок могут существенно различаться, что во многом определяется применяемыми субстратами, принятым технологическим регламентом, эксплуатационной практикой, выполняемыми задачами каждой отдельной установки.

Процесс переработки навоза составляет не более 40 дней. Получаемый в результате переработки дигестат, не имеет запаха и является прекрасным органическим удобрением, в котором достигнута наибольшая степень минерализации питательных веществ, усваиваемых растениями.

Дигестат, как правило, разделяется на жидкую и твёрдую фракции с помощью шнековых сепараторов. Жидкую фракцию направляют в лагуны, где накапливают до периода внесения в почву. Твёрдая фракция также используется в качестве удобрения. Если применить к твёрдой фракции дополнительную сушку, грануляцию и упаковку, то она будет пригодна для длительного хранения и транспортировки на большие расстояния.

Преимущества биогазовых технологий

Производство и энергетическое использования биогаза имеет целый ряд обоснованных и подтверждённых мировой практикой преимуществ, а именно:

  1. Возобновляемый источник энергии (ВИЭ). Для производства биогаза используется возобновляемая биомасса.
  2. Широкий спектр используемого сырья для производства биогаза позволяет строить биогазовые установки фактически повсеместно в районах концентрации сельскохозяйственного производства и технологически связанных с ним отраслей промышленности.
  3. Универсальность способов энергетического использования биогаза как, для производства электрической и/или тепловой энергии по месту его образования, так и на любом объекте, подключённом к газотранспортной сети (в случае подачи очищенного биогаза в эту сеть), а также в качестве моторного топлива для автомобилей.
  4. Стабильность производства электроэнергии из биогаза в течение года позволяет покрывать пиковые нагрузки в сети, в том числе и в случае использования нестабильных ВИЭ, например, солнечных и ветровых электростанций.
  5. Создание рабочих мест за счёт формирования рыночной цепочки от поставщиков биомассы до эксплуатирующего персонала энергетических объектов.
  6. Снижение негативного воздействия на окружающую среду за счёт переработки и обезвреживания отходов путём контролированного сбраживания в биогазовых реакторах. Биогазовые технологии – один из основных и наиболее рациональных путей обезвреживания органических отходов. Проекты по производству биогаза позволяют сокращать выбросы парниковых газов в атмосферу.
  7. Агротехнический эффект от применения сброженной в биогазовых реакторах массы на сельскохозяйственных полях проявляется в улучшении структуры почв, регенерации и повышении их плодородия за счёт внесения питательных веществ органического происхождения. Развитие рынка органических удобрений, в том числе из переработанной в биогазовых реакторах массы, в перспективе будет способствовать развитию рынка экологически чистой продукции сельского хозяйства и повышению его конкурентоспособности.

Ориентировочные удельные инвестиционные затраты

БГУ 75 кВтэл. ~ 9.000 €/кВтэл.

БГУ 150 кВтэл. ~ 6.500 €/кВтэл.

БГУ 250 кВтэл. ~ 6.000 €/кВтэл.

БГУ bis 500 кВтэл. ~ 4.500 €/кВтэл.

БГУ 1 МВтэл. ~ 3.500 €/кВтэл.

Выработанная электрическая и тепловая энергия могут обеспечить не только потребности комплекса, но и прилегающей инфраструктуры. Причём сырьё для БГУ бесплатное, что обеспечивает высокую экономическую эффективность после завершения периода окупаемости (4-7 лет). Себестоимость вырабатываемой на БГУ энергии со временем не растёт, а напротив – уменьшается.

Создание БГУ позволяет:

  • Отказаться от закупок постоянно растущей в цене электроэнергии из сетей;
  • Отказаться от закупок газа для производства тепла;
  • Значительно снизить объёмы закупки минеральных удобрений;
  • Уменьшить ёмкость лагун необходимую для хранения;
  • Улучшить экологическую ситуацию.

Биокомплекс поставляет следующие виды экономически эффективных биогазовых установок (БГУ) для снижения затрат хозяйств на приобретение энергетических ресурсов:

  • полноразмерные БГУ от 0,5 мВт до 5 мВт и более;

biogaz-04 биогаз альтернативная энергия

  • быстровозводимые мобильные БГУ от 75 до 120 кВт.

Быстромонтируемая БГУ Gullewerk:

исходное сырье: навозная жижа от максимально 350 голов КРС.

Состав БГУ:

  • Биореактор (поставляется в контейнере 28,6 х 3,2 х 3,2 м);
  • Когенератор (поставляется в контейнере 6 х 2,8 х 2,5 м);
  • Блок подачи сухого сырья с автоподатчиком объемом 7 m3;
  • Газонепроницаемое хранилище остаточных продуктов ферментации

объем зависит от потребностей фермы полезный объем от 620 до 2 700 m3;Накопитель дигестата (лагуна).

biogaz-07

biogaz-06

biogaz-08

Узнайте больше

Если Вы хотите получить больше информации по интересующему Вас вопросу, свяжитесь с нами. Мы не можем опубликовать все имеющиеся у нас материалы, однако с удовольствием проконсультируем Вас по интересующей Вас теме.

Это наша работа! Звоните!


Читайте так же

Позвоните и задайте свой вопрос:

8 (495) 287-45-88

Виды перерабатываемых отходов

Жидкий навоз
Жидкий навоз
Птичий помет
Птичий помет
othody-boyni
Отходы бойни
pivnaya-drobina
Пивная дробина
Спиртовая барда
Спиртовая барда
othody-kukuruzy
Отходы кукурузы
kanyiga
Каныга
saharnaya-svekla
Отходы сахарной свеклы
othody-yablok
Отходы яблок
othod-unknown
Другие виды отходов